NATURE

A cation-exchange approach to tunable magnetic intercalation superlattices

  • Picozzi, S. Engineering ferromagnetism. Nat. Mater. 3, 349–350 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, H. A window on the future of spintronics. Nat. Mater. 9, 952–954 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Csontos, M. et al. Pressure-induced ferromagnetism in (In,Mn)Sb dilute magnetic semiconductor. Nat. Mater. 4, 447–449 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Yi, D. et al. Emergent electric field control of phase transformation in oxide superlattices. Nat. Commun. 11, 902 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, S. et al. Two-dimensional ferromagnetic superlattices. Natl Sci. Rev. 7, 745–754 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, H., Wan, Z. & Duan, X. Van der Waals superlattices. Natl Sci. Rev. 9, nwab166 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wan, Z., Qian, Q., Huang, Y. & Duan, X. Layered hybrid superlattices as designable quantum solids. Nature 635, 49–60 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Molecule-confined engineering toward superconductivity and ferromagnetism in two-dimensional superlattice. J. Am. Chem. Soc. 139, 16398–16404 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Whittingham, M. S. & Gamble, F. R. The lithium intercalates of the transition metal dichalcogenides. Mater. Res. Bull. 10, 363–371 (1975).

    Article 
    CAS 

    Google Scholar
     

  • Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, Z. et al. Imprinting ferromagnetism and superconductivity in single atomic layers of molecular superlattices. Adv. Mater. 32, 1907645 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Koski, K. J. et al. Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 134, 13773–13779 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gong, Y. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, H. et al. Precision control of amphoteric doping in CuxBi2Se3 nanoplates. Precis. Chem. 2, 421–427 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • He, Q. et al. In situ probing molecular intercalation in two-dimensional layered semiconductors. Nano Lett. 19, 6819–6826 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, G. et al. Revisiting the structural evolution of MoS2 during alkali metal (Li, Na, and K) intercalation. ACS Appl. Energy Mater. 4, 14180–14190 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Guo, Y. et al. Probing the dynamics of the metallic-to-semiconducting structural phase transformation in MoS2 crystals. Nano Lett. 15, 5081–5088 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Molina-Sánchez, A. & Wirtz, L. Phonons in single-layer and few-layer MoS2 and WS2. Phys. Rev. B 84, 155413 (2011).

    Article 
    ADS 

    Google Scholar
     

  • Zou, J., Li, F., Bissett, M. A., Kim, F. & Hardwick, L. J. Intercalation behaviour of Li and Na into 3-layer and multilayer MoS2 flakes. Electrochim. Acta 331, 135284 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Li, H. et al. From bulk to monolayer MoS2: evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Zhu, L. et al. Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. J. Catal. 258, 235–242 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Flory, M. A., McLamarrah, S. K. & Ziurys, L. M. High-resolution spectroscopy of CoS (X4Δi): examining 3d transition-metal sulfide bonds. J. Chem. Phys. 123, 164312 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, Z. X. et al. The structure of the CoS2 (100)-(1×1) surface. J. Condens. Matter Phys. 19, 156223 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Luo, Y. et al. Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes. ACS Nano 12, 4565–4573 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Schlapp, R. & Penney, W. G. Influence of crystalline fields on the susceptibilities of salts of paramagnetic ions. II. The iron group, especially Ni, Cr and Co. Phys. Rev. 42, 666–686 (1932).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Greaney, M., Huan, G., Ramanujachary, K. V., Teweldemedhin, Z. & Greenblatt, M. Antiferro-to-ferromagnetic transition in metallic TlCo2SxSe2−x (0 ≤ x ≤ 2.0) with the ThCr2Si2 type structure. Solid State Commun. 79, 803–810 (1991).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Griffith, J. S. & Orgel, L. E. Ligand-field theory. Q. Rev. Chem. Soc. 11, 381–393 (1957).

    Article 
    CAS 

    Google Scholar
     

  • Deng, W. et al. Constructing matched sub-nanometric cobalt clusters with multiple oxidation and metallic states for efficient propane dehydrogenation. Commun. Mater. 5, 215 (2024).

    Article 
    CAS 

    Google Scholar
     

  • Ko, K. T. et al. RKKY ferromagnetism with Ising-like spin states in intercalated Fe1/4TaS2. Phys. Rev. Lett. 107, 247201 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

    Article 
    ADS 

    Google Scholar
     

  • Priour, D. J. & Das Sarma, S. Phase diagram of the disordered RKKY model in dilute magnetic semiconductors. Phys. Rev. Lett. 97, 127201 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mugiraneza, S. & Hallas, A. M. Tutorial: a beginner’s guide to interpreting magnetic susceptibility data with the Curie-Weiss law. Commun. Phys. 5, 95 (2022).

    Article 

    Google Scholar
     

  • Xie, L. S., Husremović, S., Gonzalez, O., Craig, I. M. & Bediako, D. K. Structure and magnetism of iron- and chromium-intercalated niobium and tantalum disulfides. J. Am. Chem. Soc. 144, 9525–9542 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pfleiderer, C. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature 412, 58–61 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Shermadini, Z. et al. Coexistence of magnetism and superconductivity in the iron-based compound Cs0.8(FeSe0.98)2. Phys. Rev. Lett. 106, 117602 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rahmanian, E. et al. 1T-phase tungsten chalcogenides (WS2, WSe2, WTe2) decorated with TiO2 nanoplatelets with enhanced electron transfer activity for biosensing applications. ACS Appl. Nano Mater. 1, 7006–7015 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Zhou, J., Zhou. J. & Duan, X. Replication data for: A cation-exchange approach to tunable magnetic intercalation superlattices. figshare https://doi.org/10.6084/m9.figshare.28908146 (2025).


  • Source link

    Back to top button