NATURE

Self-assembled photonic cavities with atomic-scale confinement

[ad_1]

  • Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Heiss, M. et al. Self-assembled quantum dots in a nanowire system for quantum photonics. Nat. Mater. 12, 439–444 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Sun, Z. et al. Generalized self-assembly of scalable two-dimensional transition metal oxide nanosheets. Nat. Commun. 5, 3813 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Klimchitskaya, G., Mohideen, U. & Mostepanenko, V. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Albrechtsen, M. et al. Nanometer-scale photon confinement in topology-optimized dielectric cavities. Nat. Commun. 13, 6281 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Lodahl, P., Mahmoodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater. 7, 527–538 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Munkhbat, B., Canales, A., Küçüköz, B., Baranov, D. G. & Shegai, T. O. Tunable self-assembled Casimir microcavities and polaritons. Nature 597, 214–219 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Mastrangeli, M. et al. Self-assembly from milli- to nanoscales: methods and applications. J. Micromech. Microeng. 19, 083001 (2009).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, I., Mun, J., Hwang, W., Yang, Y. & Rho, J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsyst. Nanoeng. 6, 65 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, W. et al. Concurrent self-assembly of RGB microLEDs for next-generation displays. Nature 617, 287–291 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, K. et al. A Gd@C82 single-molecule electret. Nat. Nanotechnol. 15, 1019–1024 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hah, J. H. et al. Converging lithography by combination of electrostatic layer-by-layer self-assembly and 193 nm photolithography: Top-down meets bottom-up. J. Vac. Sci. Technol. B 24, 2209–2213 (2006).

    Article 
    CAS 

    Google Scholar
     

  • George, D. & Madou, M. J. in Mechanical Sciences: The Way Forward (eds Dixit, U. S. & Dwivedy, S. K.) 197–239 (Springer, 2021).

  • Luo, S. et al. High-throughput fabrication of triangular nanogap arrays for surface-enhanced Raman spectroscopy. ACS Nano 16, 7438–7447 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ouk Kim, S. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Liu, F. et al. Sculpting extreme electromagnetic field enhancement in free space for molecule sensing. Small 14, 1801146 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Palstra, I. M., Doeleman, H. M. & Koenderink, A. F. Hybrid cavity-antenna systems for quantum optics outside the cryostat? Nanophotonics 8, 1513–1531 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Gondarenko, A. et al. Spontaneous emergence of periodic patterns in a biologically inspired simulation of photonic structures. Phys. Rev. Lett. 96, 143904 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Albrechtsen, M., Vosoughi Lahijani, B. & Stobbe, S. Two regimes of confinement in photonic nanocavities: bulk confinement versus lightning rods. Opt. Express 30, 15458–15469 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hu, S. & Weiss, S. M. Design of photonic crystal cavities for extreme light concentration. ACS Photonics 3, 1647–1653 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mork, J. & Yvind, K. Squeezing of intensity noise in nanolasers and nanoLEDs with extreme dielectric confinement. Optica 7, 1641–1644 (2020).

    Article 
    ADS 

    Google Scholar
     

  • Choi, H., Heuck, M. & Englund, D. Self-similar nanocavity design with ultrasmall mode volume for single-photon nonlinearities. Phys. Rev. Lett. 118, 223605 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4, 477–483 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bozkurt, A., Joshi, C. & Mirhosseini, M. Deep sub-wavelength localization of light and sound in dielectric resonators. Opt. Express 30, 12378–12386 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Hollenbach, M. et al. Wafer-scale nanofabrication of telecom single-photon emitters in silicon. Nat. Commun. 13, 7683 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Panuski, C. L. et al. A full degree-of-freedom spatiotemporal light modulator. Nat. Photonics 16, 834–842 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Bishop, K. J., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buks, E. & Roukes, M. Stiction, adhesion energy, and the Casimir effect in micromechanical systems. Phys. Rev. B 63, 033402 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Rodriguez, A. W., Capasso, F. & Johnson, S. G. The Casimir effect in microstructured geometries. Nat. Photonics. 5, 211–221 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Burger, F. A., Corkery, R. W., Buhmann, S. Y. & Fiedler, J. Comparison of theory and experiments on van der waals forces in media—a survey. J. Phys. Chem. C 124, 24179–24186 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Midolo, L., Schliesser, A. & Fiore, A. Nano-opto-electro-mechanical systems. Nat. Nanotechnol. 13, 11–18 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Palasantzas, G. & Svetovoy, V. B. Problems in measuring the Casimir forces at short separations. Int. J. Mod. Phys. A 37, 2241001 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Behunin, R., Intravaia, F., Dalvit, D., Neto, P. M. & Reynaud, S. Modeling electrostatic patch effects in Casimir force measurements. Phys. Rev. A 85, 012504 (2012).

    Article 
    ADS 

    Google Scholar
     

  • Gies, H. & Klingmüller, K. Casimir edge effects. Phys. Rev. Lett. 97, 220405 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Vosoughi Lahijani, B. et al. Electronic-photonic circuit crossings. Preprint at https://doi.org/10.48550/arXiv.2204.14257 (2022).

  • Chao, P., Strekha, B., Kuate Defo, R., Molesky, S. & Rodriguez, A. W. Physical limits in electromagnetism. Nat. Rev. Phys. 4, 543–559 (2022).

    Article 

    Google Scholar
     

  • Bharadwaj, S., Van Mechelen, T. & Jacob, Z. Picophotonics: anomalous atomistic waves in silicon. Phys. Rev. Appl. 18, 044065 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • He, Q. & Tang, L. Sub-5 nm nanogap electrodes towards single-molecular biosensing. Biosens. Bioelectron. 213, 114486 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Ronn, J. et al. Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement. ACS Photonics 3, 2040–2048 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Delaney, R. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489–493 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Arregui, G. et al. Cavity optomechanics with Anderson-localized optical modes. Phys. Rev. Lett. 130, 043802 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Rosiek, C. A. et al. Observation of strong backscattering in valley-Hall photonic topological interface modes. Nat. Photon. 17, 386–392 (2023).

  • Tsoukalas, K., Vosoughi Lahijani, B. & Stobbe, S. Impact of transduction scaling laws on nanoelectromechanical systems. Phys. Rev. Lett. 124, 223902 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Babar, A. N. et al. Self-assembled photonic cavities with atomic-scale confinement. Zenodo https://doi.org/10.5281/zenodo.8301463 (2023).

  • [ad_2]
    Source link

    Back to top button